Problem 1.33

If you have some experience in electromagnetism and with vector calculus, prove that the magnetic forces, \mathbf{F}_{12} and \mathbf{F}_{21}, between two steady current loops obey Newton's third law. [Hints: Let the two currents be I_{1} and I_{2} and let typical points on the two loops be \mathbf{r}_{1} and \mathbf{r}_{2}. If $d \mathbf{r}_{1}$ and $d \mathbf{r}_{2}$ are short segments of the loops, then according to the Biot-Savart law, the force on $d \mathbf{r}_{1}$ due to \mathbf{r}_{2} is

$$
\frac{\mu_{\mathrm{o}}}{4 \pi} \frac{I_{1} I_{2}}{s^{2}} d \mathbf{r}_{1} \times\left(d \mathbf{r}_{2} \times \hat{\mathbf{s}}\right)
$$

where $\mathbf{s}=\mathbf{r}_{1}-\mathbf{r}_{2}$. The force \mathbf{F}_{12} is found by integrating this around both loops. You will need to use the " $B A C-C A B$ " rule to simplify the triple product.]

Solution

Get the magnetic force on loop 1 due to loop 2 by integrating the given expression around both loops.

$$
\begin{aligned}
\mathbf{F}_{12} & =\oint_{\text {loop 1 loop 2 }} \oint \frac{\mu_{\mathrm{o}}}{4 \pi} \frac{I_{1} I_{2}}{s^{2}} d \mathbf{r}_{1} \times\left(d \mathbf{r}_{2} \times \hat{\mathbf{s}}\right) \\
& =\frac{\mu_{\mathrm{o}}}{4 \pi} I_{1} I_{2} \oint_{\text {loop 1 loop 2 }} \oint \frac{d \mathbf{r}_{1} \times\left(d \mathbf{r}_{2} \times \hat{\mathbf{s}}\right)}{s^{2}}
\end{aligned}
$$

Use the BAC-CAB identity: $\mathbf{A} \times(\mathbf{B} \times \mathbf{C})=\mathbf{B}(\mathbf{A} \cdot \mathbf{C})-\mathbf{C}(\mathbf{A} \cdot \mathbf{B})$.

$$
\begin{aligned}
& \mathbf{F}_{12}=\frac{\mu_{\mathrm{o}}}{4 \pi} I_{1} I_{2} \oint_{\text {loop } 1 \text { loop } 2} \oint \frac{d \mathbf{r}_{2}\left(d \mathbf{r}_{1} \cdot \hat{\mathbf{s}}\right)-\hat{\mathbf{s}}\left(d \mathbf{r}_{1} \cdot d \mathbf{r}_{2}\right)}{s^{2}} \\
& =\frac{\mu_{\mathrm{o}}}{4 \pi} I_{1} I_{2} \oint_{\text {loop 1 loop 2 }} \oint\left[d \mathbf{r}_{2}\left(d \mathbf{r}_{1} \cdot \frac{\hat{\mathbf{s}}}{s^{2}}\right)-\frac{\hat{\mathbf{s}}}{s^{2}}\left(d \mathbf{r}_{1} \cdot d \mathbf{r}_{2}\right)\right] \\
& =\frac{\mu_{\mathrm{o}}}{4 \pi} I_{1} I_{2}\left[\oint_{\text {loop } 1 \text { loop } 2} \oint_{2} d \mathbf{r}_{2}\left(d \mathbf{r}_{1} \cdot \frac{\hat{\mathbf{s}}}{s^{2}}\right)-\oint_{\text {loop } 1 \text { loop } 2} \oint_{s^{2}} \frac{\hat{\mathbf{s}}}{s^{2}}\left(d \mathbf{r}_{1} \cdot d \mathbf{r}_{2}\right)\right] \\
& \left.=\frac{\mu_{\mathrm{o}}}{4 \pi} I_{1} I_{2}\left[\oint_{\text {loop } 1 \text { loop 2 }} \oint_{2} d \mathbf{r}_{2}\left(\frac{\hat{\mathbf{s}}}{s^{2}} \cdot d \mathbf{r}_{1}\right)-\oint_{\text {loop } 1 \text { loop 2 }} \oint_{s^{2}} \frac{1}{s}\right)\left(d \mathbf{r}_{1} \cdot d \mathbf{r}_{2}\right)\right] \\
& =\frac{\mu_{\mathrm{o}}}{4 \pi} I_{1} I_{2}\left\{\oint_{\text {loop 2 }}\left[\oint_{\text {loop 1 }}\left(\frac{\hat{\mathbf{s}}}{s^{2}} \cdot d \mathbf{r}_{1}\right)\right] d \mathbf{r}_{2}-\oint_{\text {loop 1 loop 2 }} \oint_{s^{3}} \frac{\mathbf{s}}{s^{3}}\left(d \mathbf{r}_{1} \cdot d \mathbf{r}_{2}\right)\right\} \\
& =\frac{\mu_{\mathrm{o}}}{4 \pi} I_{1} I_{2}\{\oint_{\text {loop } 2}[\underbrace{\oint_{\text {loop } 1} \nabla\left(-\frac{1}{s}\right) \cdot d \mathbf{r}_{1}}_{=0}] d \mathbf{r}_{2}-\oint_{\text {loop 1 loop 2 }} \oint_{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|^{3}} \frac{\mathbf{r}_{1}-\mathbf{r}_{2}}{\left.\left.\frac{\mathbf{r}_{1}}{} \cdot d \mathbf{r}_{2}\right)\right\}}
\end{aligned}
$$

The integral in square brackets is zero because of the fundamental theorem for gradients.

$$
\int_{\mathbf{a}}^{\mathbf{b}} \nabla f d \tau=f(\mathbf{b})-f(\mathbf{a})
$$

For a closed loop, $\mathbf{b}=\mathbf{a}$, which makes the right side zero.

$$
\mathbf{F}_{12}=-\frac{\mu_{\mathrm{o}}}{4 \pi} I_{1} I_{2} \oint_{\text {loop } 1 \text { loop 2 }} \oint_{\mid \mathbf{r}_{1}-\mathbf{r}_{2}}^{\left|\mathbf{r}_{2}\right|^{3}}\left(d \mathbf{r}_{1} \cdot d \mathbf{r}_{2}\right)
$$

Therefore,

$$
\begin{aligned}
\mathbf{F}_{21} & =-\frac{\mu_{\mathrm{o}}}{4 \pi} I_{2} I_{1} \oint_{\text {loop } 2 \text { loop 1 }} \oint \frac{\mathbf{r}_{2}-\mathbf{r}_{1}}{\left|\mathbf{r}_{2}-\mathbf{r}_{1}\right|^{3}}\left(d \mathbf{r}_{2} \cdot d \mathbf{r}_{1}\right) \\
& =-\frac{\mu_{\mathrm{o}}}{4 \pi} I_{1} I_{2} \oint_{\text {loop 1 loop 2 }} \oint \frac{-\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|^{3}}\left(d \mathbf{r}_{1} \cdot d \mathbf{r}_{2}\right) \\
& =\frac{\mu_{\mathrm{o}}}{4 \pi} I_{1} I_{2} \oint_{\text {loop 1 loop 2 }} \oint_{\mid \mathbf{r}_{1}-\mathbf{r}_{2}}^{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|^{3}}\left(d \mathbf{r}_{1} \cdot d \mathbf{r}_{2}\right) \\
& =-\mathbf{F}_{12} .
\end{aligned}
$$

The loops are separate and have their own parameterizations, so the integrals over them can be interchanged without issue.

